Boc modifies the holoprosencephaly spectrum of Cdo mutant mice

نویسندگان

  • Wei Zhang
  • Mingi Hong
  • Gyu-un Bae
  • Jong-Sun Kang
  • Robert S. Krauss
چکیده

Holoprosencephaly (HPE) is caused by a failure to form the midline of the forebrain and/or midface. It is one of the most common human birth defects, but clinical expression is extremely variable. HPE is associated with mutations in the sonic hedgehog (SHH) pathway. Mice lacking the Shh pathway regulator Cdo (also called Cdon) display HPE with strain-dependent penetrance and expressivity, implicating silent modifier genes as one cause of the variability. However, the identities of potential HPE modifiers of this type are unknown. We report here that whereas mice lacking the Cdo paralog Boc do not have HPE, Cdo;Boc double mutants on a largely Cdo-resistant genetic background have lobar HPE with strong craniofacial anomalies and defects in Shh target gene expression in the developing forebrain. Boc is therefore a silent HPE modifier gene in mice. Furthermore, Cdo and Boc have specific, selective roles in Shh signaling in mammals, because Cdo;Boc double-mutant mice do not display the most severe HPE phenotype seen in Shh-null mice, nor do they have major defects in digit patterning or development of vertebrae, which are also Shh-dependent processes. This is in contrast to reported observations in Drosophila, where genetic removal of the Cdo and Boc orthologs Ihog and Boi results in a complete loss of response to the hedgehog ligand. Therefore, there is evolutionary divergence between mammals and insects in the requirement of the hedgehog pathway for Cdo/Ihog family members, with mammalian development involving additional factors and/or distinct mechanisms at this level of pathway regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function

Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible f...

متن کامل

The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice.

Cdo and Boc encode cell surface Ig/fibronectin superfamily members linked to muscle differentiation. Data here indicate they are also targets and signaling components of the Sonic hedgehog (Shh) pathway. Although Cdo and Boc are generally negatively regulated by Hedgehog (HH) signaling, in the neural tube Cdo is expressed within the Shh-dependent floor plate while Boc expression lies within the...

متن کامل

Brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish.

The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (uml(ty54)) mutant was identified by defects in retinotectal axon projections. He...

متن کامل

Microform Holoprosencephaly in Mice that Lack the Ig Superfamily Member Cdon

Holoprosencephaly (HPE), the most common developmental defect of the forebrain and midface, is caused by a failure to delineate the midline in these structures. Despite the identification of several HPE genes, its genetic basis is largely unknown. Furthermore, the phenotype of affected individuals is highly variable, even within pedigrees. Facial defects in HPE range from cyclopia and proboscis...

متن کامل

Promyogenic members of the Ig and cadherin families associate to positively regulate differentiation.

Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Cell-surface proteins proposed to mediate this effect include both classical cadherins and Ig superfamily members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that CDO and BOC, two promyogenic Ig sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011